
Isadora Manual 249

Deleting Individual HID Inputs
To delete individual inputs one-by-one from the OSC Stream Editor window:

3) Click in the Port text box for the input you wish to delete.

4) Click the minus (-) symbol at the bottom-left of the window. The item will
be deleted.

Erasing the Entire List
The Clear List function will permanently delete all addresses from the Stream Setup
window. This operation is not undoable!

To permanently clear the input list:
3) Click the Clear List button.

4) Isadora will show a dialog asking if you are sure you want to delete all the
items. Click the OK button to confirm your choice and delete all items.

Serial Input/Output
Isadora can transmit and receive data via standard serial (RS-232, RS-485)
hardware installed on your computer using the Send Serial Data, Serial In Watcher
– Binary and Serial In Watcher - Text actors.

Hardware Interface & Drivers
Before you begin, you must have a hardware serial interface that allows you to
connect serial devices to your computer. Before using the interface with Isadora,
you must install its drivers. To do this, please follow the installation instructions in
the interface’s manual. Note: Isadora should not be running when you install the
drivers, otherwise the interface may not be recognized.

After you’ve installed any required drivers, you should connect the install the serial
device or connect it to your computer as appropriate.

Serial Port Setup
Ensure that your serial input/output interface is connected to/installed on your
computer. Then start Isadora and choose Communications > Serial Port Setup. A
dialog will appear that looks like this:

Isadora Manual 250

This window determines communications settings of Isadora’s two ports, and
whether or not the port is enabled.

Preparing a Port for Serial Communications:
1) Select the desired output device from the popup menu at the right. After you do

so, the name of the device will appear next to the caption Device on the left
side. It will also indicate if the device is currently online.

2) Set the speed, parity, and number of bits to transmit.
3) If necessary, set the “Flow Control” popup to Hardware to enable hardware

handshaking, or Xon/Xoff to enable software handshaking.
4) Repeat if necessary for Ports 2, 3 or 4.
5) Click OK to confirm your settings.

Enabling for Serial Communications:
To enable serial communications, choose Communications > Enable Serial Ports.
Isadora will report an error if there are any problems initializing the serial ports.
Otherwise you can assume that serial communications have been enabled. Note that
this setting is saved with the Isadora document. If you save the document with the
serial ports enabled, Isadora will attempt to open those ports automatically the next
time the document is opened.

Disabling for Serial Communications:
To disable serial communications, choose Communications > Enable Serial
Ports. Note that this setting is saved with the Isadora document. If you save the
document with the serial ports disabled, Isadora will not attempt to open those ports
automatically the next time the document is opened.

Isadora Manual 251

Receiving Serial Data: (v1.3)
For information on how to receive data from to the serial port, see the
documentation for the text and binary versions of Serial In Watcher actor starting
on page 455.

Sending Serial Data:
See the documentation for the Send Serial Data actor on Page 453 for information
on how to send data to the serial port.

Input Data Parsing – Overview
Several actors allow you to parse incoming data streams from external sources like
serial input devices or data acquired over the internet via a TCP/IP connection. All
of these actors use a common system for being able to extract values and other
meaningful data from within these streams. In Isadora 1.3, these actors include the
Serial In Watcher- Binary, Serial In Watcher - Text, TCP InWatcher - Binary, TCP
In Watcher - Text. This section explains the parsing system and how to use it.
The first step is to define a "pattern" – a special set of codes used by Isadora to
specify the format of the data coming from the external device and how to extract
parameters from it.
To do this, you must first get information about the format of the data that will be
received by Isadora from your external device. For hardware devices, you can
usually find this information in the device owner's manual, on the Internet, or by
asking the device vendor. For data streams coming over the internet, you may need
to seek online documentation or to examine the data stream itself.

Once you understand the incoming data stream, you can develop a pattern that
matches data coming from the device, and tells the plugin what data to assign to
what output parameters, if any. To enter or edit the pattern, double-click the actor to
open the “input parser” dialog box and enter the pattern in the text field at the top.

The Input Parser Dialog for a Serial In Watcher Actor

Each time a block of data received, an attempt is made to match it against your
pattern. If the match is successful, parameters are parsed out of data stream and sent
to the output properties defined by the pattern.

For example, say you have a light level sensor attached to your serial port and it
sends a continuous stream of messages reporting the light level. The message comes
in the form of ASCII text: the “#” sign, followed by a two –digit hexadecimal

Isadora Manual 252

followed by a carriage return character. The stream of data might look something
like this in a terminal program:
#0A
#0F
#15

Because the data is text based, and because it ends with an “end of line” marker (the
carriage return) you would choose the Serial In Watcher - Text actor to read and
interpret the data. Within your pattern, you would also define an output parameter
(say, "light level") that will be added to the Serial In Watcher - Text actor, and that
will output the light level whenever a valid message is received.
In addition to any output parameters you have defined, the "msg rcv" output
parameter is always defined and sends a signal out every time a block of data
matches your pattern.

Text vs. Binary Actors
There are two forms of each actor that pares input data: a "Text" one and a "Binary"
one. The only difference between the two is the text actor reads input data until the
some delimiter character is hit, and then matches that data with the pattern, while
the binary actor reads input data in fixed size blocks. For both the text and binary
actors, the pattern syntax and matching rules described below are exactly the same.
The text version of the actor has an input named "eom char". This is the delimiter
character. Typically you would set this to a newline or a carriage return but any
values are acceptable. The current default is 13 (carriage return).

The binary version of the actor has three inputs "msg len", "timeout", and "reset".
The "msg len" parameter specifies the length of a block of data in bytes. Each time
this many bytes is read from the input, the data is matched to your pattern. If no
bytes arrive within the "timeout" period, then any partial input data is discarded, the
pattern is not matched, and the actor continues to wait for new input. The "reset"
input can be used to force a reset just as if the timeout period expired.	

Data Parsing: Patterns
Patterns are composed of a series of one or more "elements", where an element
defines the format of one part of the input data. Pattern elements can match, say, a
word or a number in the input data, a sequence of bytes, etc.
There are two flavors of pattern elements: text and binary (indicated in the table
below). Text elements are typically used when matching human-readable, text input
data (for example, a video player that sends the string "FRAME 2482 SPEED 1.0").
Binary elements are used to match bytes of raw data (such as 2 byte integers, or
bitfields). You can mix both text and binary elements together in a single pattern.
Text and binary elements can be used interchangeably in both the text and binary
versions of the data input parsing actors!. Again, the only difference between the
"text" and "binary" actors is what defines a block of input data.

Isadora Manual 253

Between any two text type elements, any amount of whitespace (tabs, spaces, etc,
but not the delimiter character) in the input data is ignored. Between any two binary
type elements, or a text and binary type element, the pattern must match the input
exactly. While this rule sounds a little convoluted, in the end it (hopefully) allows
matching text data to be more convenient and intuitive (because you don't have to
explicitly write rules to match whitespace between words in text data -- the actor
takes care of that for you).

The value of any element can also be assigned to user-defined actor output
parameters. The syntax for assigning values to output parameters is detailed below.
You define the parameter name and type, and the value of the element is interpreted
depending on the parameter type you define.	

Data Parsing: Elements
Separate each element in your pattern string with whitespace. Here is the syntax and
description for all of the pattern elements you can define. In the syntax column
below, bold things are literal characters/words that you type, italic items are
variables and parameters you make up, and square braces [] enclose optional items.

Syntax	 Type	 Example	 Description	

"	string	"	 Text	 "hello" Case-insensitive	string	
match	(example	also	
matched	"HELLO",	
"HeLlO",	etc).	
Question	marks	and	
backslashes	have	
special	meaning	in	
these	strings	(see	table	
below).	

'	string	'	 Text	 'hello' Case-sensitive	string	
match.	Question	
marks	and	backslashes	
have	special	meaning	
in	these	strings.	

[n]	[.	[m]]	#	
[n]	[.	[m]]	digits		

Text	 8.2#
4 digits

.#

Matches	a	decimal	
number.	Specifically,	
matches	an	optional	
+/-	at	the	start	of	a	
number,	and	up	to	n	
digits	to	the	left	of	the	
decimal	point	and	m	
digits	to	the	right.	If	
you	leave	out	n	or	m,	
any	number	of	digits	
matches	but	keep	in	
mind	that	if	you	leave	
out	the	period,	then	
this	element	will	not	

Isadora Manual 254

accept	input	with	a	
decimal	point	in	it	(i.e.	
".#"	signifies	a	number	
with	an	optional	
decimal	point,	of	any	
length,	"#"	specifies	an	
integer	only).	The	
words	"digit",	"digits",	
and	"#"	all	mean	the	
same	thing,	"#"	is	just	
a	shortcut.	

[n]	X	
[n]	hex		

Text	 8X
x
4 hex

Matches	a	
hexadecimal	number,	
up	to	n	digits.	If	n	not	
specified,	then	
matches	any	number	
of	digits	(making	the	
longest	possible	
match).	Both	"x"	and	
"hex"	mean	the	same	
thing.	

[n]	A	
[n]	letters		

Text	 8A
8 letters
4 hex

Matches	up	to	n	
letters	(depends	on	
current	locale	but	
these	are	letters	in	the	
alphabet	only,	of	any	
case).	If	n	not	
specified,	then	makes	
the	longest	possible	
match.	The	keywords	
"a",	"letter",	and	
"letters"	all	mean	the	
same	thing.	

[n]	C	
[n]	chars		

Text	 4c
characters
4 hex

Matches	up	to	n	
characters	(any	
printable	character;	
pretty	much	any	
character	with	a	
picture	on	your	
keyboard	except	for	
whitespace,	this	
includes	letters,	
numbers,	and	
punctuation).	If	n	not	
specified,	then	makes	
the	longest	possible	
match.	The	keywords	
"c",	"char",	"chars",	
"character",	and	
"characters"	all	mean	
the	same	thing.	

Isadora Manual 255

[character_set]	 Text	 [a-zA-Z]
[^ 0-9]
[abc 4\r\n]

Matches	one	or	more	
characters	in	
character_set	(see	
below).	

[[character_set]]	 Text	 [[a-zA-Z]]
[[^ 0-9]]

Matches	exactly	one	
character	in	
character_set.	

eol	 Text	 eol Matches	any	sequence	
of	characters	(possibly	
none	at	all)	up	to	and	
including	a	CR/LF,	then	
matches	all	following	
CR/LF	characters.	This	
can	be	used	to	match	
the	remainder	of	a	line	
of	text.	Please	note	
that	for	the	text	
versions	of	actors	that	
parse	input	data,	the	
use	of	the	delimiter	
character	makes	this	
element	a	little	bit	
ambiguous.	You	may	
want	to	avoid	this	with	
the	text	actor	for	the	
time	being	unless	you	
are	sure	you	want	to	
use	it...	if	all	you	want	
to	do	is	say	"this	input	
data	ends	with	a	
linebreak",	consider	
using	the	text	actor	
with	the	"eom	char"	
input	parameter	
instead.	

[n]	?	
[n]	bytes	

Binary	 4?
17 bytes

Matches	a	sequence	of	
n	bytes	of	any	value.	If	
n	is	left	out,	1	is	
assumed.	"?",	"byte",	
and	"bytes"	all	mean	
the	same	thing.	

{	byte_set	}	 Binary	 { 00-20 F0 F1 } Matches	one	or	more	
characters	in	byte_set	
(see	below).	

{{	byte_set	}}	 Binary	 {{ 00, 01, 08 }}
{{0A}}

Matches	exactly	one	
character	in	byte_set.	

Isadora Manual 256

(bitfields)	[:	type]	 Binary	 See	below.	 Matches	some	number	
of	bytes	in	the	input	
data,	and	extracts	
integer	bitfields	from	
the	matched	bytes.	
This	can	be	used	to	
read	bitfields	from	
binary	integers.	The	
type	specifies	the	
endianness	of	the	
matched	integer,	is	
optional,	and	is	either	
"B"	or	"L".	Default	if	
not	specified	is	"B".	
See	below	for	more	
details.	

Data Input Elements: String
Some characters or character sequences in a string (inside single or double quotes)
have special meaning:

? This	matches	any	character	in	the	input	at	all.	

\? Use	this	to	match	an	actual	question	mark	(since	a	lone	question	
mark	has	a	special	meaning).	

\" A	double	quote.	

\' A	single	quote.	

\n A	linefeed	(ASCII	10).	

\r A	carriage	return	(ASCII	13).	

\t A	tab	(ASCII	9).	

\\ A	backslash.	

So the element "?ack\?" will match any of the following input data (for example):
back? HACK? pAcK?

Data Input Elements: Character_set
A character set consists of a set of characters and character ranges. These are
specified inside square braces. If you want to include a literal hyphen in a character
set, specify that hyphen first. If you want to invert the character set (i.e. all
characters not specified), put a caret (^) as the first character. Here are some
examples (these examples are inside single square braces; [[]] double square braces
use the same syntax). Note that spaces inside a character set are significant -- they
match spaces in the input. Escape sequences like to the ones listed in the table
above can be used in character sets to identify special characters (like tabs and
newlines) (note that a ? is just a plain old ? in character sets, though, unlike in
strings).

Isadora Manual 257

[ABCD] The	characters	A,	B,	C,	or	D.	

[A-D] The	characters	A,	B,	C,	or	D.	

[a-zA-Z] Any	lowercase	or	uppercase	letter	(English	locale,	ASCII).	

[-xyz] A	hyphen,	x,	y,	or	z.	

[-0-9] A	hyphen	or	a	numeric	digit.	

[^a] Any	character	except	a	lowercase	a.	

[^-0-9] Any	character	except	hyphens	and	numeric	digits.	

["ABCD\r\t] A	space,	a	double	quote,	an	A,	B,	C,	or	D,	a	carriage	return,	or	a	
tab.	

[^-abc 24M-O] Anything	except	a	hyphen,	a,	b,	c,	space,	2,	4,	M,	N,	O,	or	tab.	

Data Input Elements: byte_set
A byte_set is similar in spirit to a character set except you specify 2-digit
hexadecimal numbers instead of characters. You can separate individual values
with spaces or commas (whichever you prefer, they are treated the same). These
appear in curly braces. Here are some examples, in single curly braces (but double
curly brace syntax also uses these). To invert the set, specify a caret (^) as the first
character.

{ 00 01 } The	bytes	0	or	1.	

{ 0A, 0D, 10 } The	bytes	0A,	0D,	or	10	(hex).	

{ 03-08 F0-FF } The	bytes	03	to	08	or	F0	to	FF.	

{ ^ 30 - 39 } Anything	except	the	bytes	30	to	39	(hex).	

{^30-39} Same	as	above,	just	showing	that	you	can	leave	out	the	spaces.	

Data Input Elements: bitfields
Frequently, devices with binary formatted data pack multiple values into a single
integer, covering only a few bytes. You can use bitfield elements to specify such
bitfields and optionally assign the values of certain fields to output parameters.
Bitfields are slightly different than the other elements in that the parameter
assignment rules described in the following section do not apply. Instead, multiple
parameters may be specified in a single bitfield element. For more information on
how to define actor output parameters for the other element types, read "Parameter
Assignment" below.
Bitfield syntax is like so:

([name =] start - end , [name =] start - end , ...) [: B | L]

The name is optional and defines an actor output parameter to assign the value of
the bitfield to. The output parameter type will be an integer, and the rules for name
are the same as described in "Parameter Assignment" below (must not start with
number, etc). The start and end values specify the start and ending bit index into the

Isadora Manual 258

integer, with 0 being the least-significant bit. The number of bytes of input matched
is implied by the highest bit index here! So if the highest bit index is 15, then this
actor assumes the integer size is 16 bits, and so matches 2 bytes of input data (1
byte is 8 bits). The "B" and "L" on the end are optional and specify the byte
endianness of the binary integer: big-endian or little-endian, respectively. If neither
is specified, "B" is assumed. The input bytes are read, converted to an integer value
according to the specified endianness, and then bitfield values are extracted. Note
that multiple fields may cover the same bits, if you want.

This syntax sounds complicated but it's not. Hopefully some examples will clear it
up. Say you are using the Monome button box (see
http://wiki.monome.org/view/SerialProtocol). The Monome button box has 2 output
messages, each are 2 bytes long. To extract the values of "press" messages:
(address = 15-12 , state = 11-8 , x = 7-4 , y = 3-0)
If you don't care about "state", you can just leave it out entirely:

(address = 15-12 , x = 7-4 , y = 3-0)
In both cases, the maximum bit index is 15 so 2 bytes of input data are matched,
and those 2 bytes are treated as a big-endian integer. Now let's say you don't care
about "address" or "state". You're still going to want to leave a placeholder there so
that Isadora knows you need 2 bytes:
(11-10 , x = 7-4 , y = 3-0)
The "11-10" is a silly value but illustrates a point: The number of bits required is
rounded up to the nearest byte, and also it's OK if there are bits that aren't part of
bitfields. 11 rounded up to the nearest byte is 16 bits. Bits 12-15 and 8-9 are unused.
Here is a slightly more complex example that specifies a little-endian 64-bit (8 byte)
integer (you are not limited to 32 bits -- the highest bit index you can use is
unlimited, however if a single field spans more than 32 bits, you will likely
encounter some problems). Note the overlapping bitfields and the 1-bit value "c":
(a=60-40, b=20-15, bb=18-15, c=14-14, d=13-2) : L
As mentioned below, this actor has no built-in support for filtering out certain
values (such as only responding to Monome button messages with a certain
"address"). You will have to use the techniques described below to accomplish this.

Data Input: Parameter Assignment
Pattern elements match specific portions of the input data. Sometimes you will want
this actor to output the values that it matches. To do this, use the syntax
name:type=element where name is any parameter name you define, type
describes the parameter type and some details about the format of the matched data,
and element is the pattern element as described above (can be any element except a
bitfield). For example, light_level:integer=8 digits defines an actor output
parameter named "light level" with an integer type, matches up to 8 digits in the

Isadora Manual 259

input, and converts the matched digits to an integer, outputting the value from the
actor.
Parameter names may consist of letters, numbers, and underscores, but must not
start with a number ("_value" and "something2" are valid, "2cool" is not valid). The
type specifies the type of the actor's output parameter, and for certain binary-flavor
elements, describes how the binary data is interpreted. The following types are
valid:

string A	text	string.	

float A	decimal	number.	Please	note	that	binary	floating-point	
numbers	are	not	currently	supported.	

integer An	integer.	For	binary	types,	the	same	as	"integer".	

binteger An	integer.	For	binary	types,	input	treated	as	big-endian	integer.	

linteger An	integer.	For	binary	types,	input	treated	as	little-endian	
integer.	

You do not need to specify the entire type, you only need to specify a unique prefix,
so "str" is the same as string, "int" is the same as "integer", "f" is the same as
"float", etc. Here are some examples:

value : integer = 3 digits Matches	up	to	3	digits,	assigns	to	integer	"value".	

mixlevel:float=.# Matches	a	decimal	number,	assigns	to	float	"mixlevel".	

position:float=8.2# Matches	a	decimal	number,	assigns	to	float	"position".	

word:string="hello" Matches	the	string	"hello"	and	assigns	to	string	parameter	
"word".	

id:string=3 digits Matches	up	to	3	digits,	assigns	to	string	"id".	

choice:string=[[a-z]] Matches	a	single	lowercase	letter,	assigns	to	string	"choice".	

color:int=? Matches	a	single	byte	of	any	value,	assigns	to	integer	
"color".	

volume:bint=4 bytes Matches	4	bytes	of	any	value,	treated	as	big-endian	integer	
and	assigned	to	"volume".	

fname:string=letters Matches	a	sequence	of	1	or	more	letters,	assigns	to	string	
"fname".	

If you assign a text element to an integer parameter, the actor attempts to convert as
much as possible to an integer. So if you have "a:int=characters", and the input is
"123abc", a will be assigned a value of 123. Similarly, if you have "b:int=letters", b
will always have the value 0.

Some technical info: You are not limited to standard machine sizes for binary
integers. You can do "a:int=3?" to match 3 bytes, treat as a little-endian 3-byte
integer, and assign the value to a. You can also do "b:int=15?" to match 15 bytes,
but keep in mind that internally, the actor can't really represent values wider than 4
bytes, so the matched value will be truncated if it is too large.

Isadora Manual 260

Now, sometimes you will want to only respond to input matches if certain
parameters you define have certain values. For example, say a text-mode device
sends out a single character at the start of each line specifying the line type. This
actor currently does not have built-in support for doing that kind of filtering. You
have two options to do this. The first option is, if possible, to make sure that your
pattern elements are specified in such a way that only the data you are interested in
is matched (for example, if you are only interested in lines where the first word is
"a", the specify an "a" element to take care of this). Another option is to combine
this actor with other Isadora actors that filter out certain values; so you might take
the first character at the start of each line and assign it to an output parameter, and
then run that output parameter into a Comparator actor to check for the values you
want to respond to.	

Data Input: Examples
"?????" Matches	any	5	bytes.	

[^*] "*" Matches	any	string	ending	in	an	asterisk.	

'Hello' Matches	the	string	"Hello",	case-sensitive.	

"moveto" x:float=.#
y:float=.# z:float=.#

Matches	strings	like	MoveTo	6.8	-2.3	89	or	MOVETO	+9	-13.	+.1.	

a:int=2 digits [^|] "|"
b:int=2 digits [^|] "|"
c:int=2 digits

Matches	a	string	such	as	43	apples	|	8	oranges	|	98	monkeys,	
assigning	the	values	43,	8,	and	98	to	the	integer	output	
parameters	a,	b,	and	c,	respectively.	

hue:int=2x ","
sat:int=2x ","
val:int=2x

Matches	a	string	like	4F	,	8B	,	9A,	converting	the	hexadecimal	
values	to	integers	and	assigning	to	output	parameters.	

"#" r:int=2x g:int=2x
b:int=2x

Match	and	parse	the	values	of	an	HTML	color	such	as	#FF0020.	

	

Data Output Formatting
Several actors allow you to format one or more input parameters into a resulting
string of text characters. The system used to accomplish that formatting is the same
for each of these actors. In Isadora 1.3, the actors include the Text Formatter, Send
Serial Data, TCP Send Data.
First, you should set the params input on the actor, as this will add input parameters
(param 1, param 2, etc.) that will be used when generating the final output. Up to
nine parameters may be accepted by any one actor.
To edit the formatting specifier, double-click this actor's icon and an editor dialog
will appear.

Isadora Manual 261

In it’s simplest form the editor will accept a text string enclosed in single quotes. In
the example above, each time the actor was triggered to generate output, the four
ASCII characters ‘d’, ‘a’, ‘t’, ‘a’ would be generated.
You may also include two-digital hexadecimal values, outside the quotes to specify
characters that cannot be represented on a keyboard. For instance, the formatting
specifier

“hello” 0D 0A

would send the ASCII characters “hello” followed by a Carriage Return (hex 0D,
decimal 13) and a Line Feed character (hex 0A, decimal 10).

To format and include a values sent to one of the actor’s input properties, you
would use the notation Px, where x is a number from 1 to 9, indicating which
parameter you wish to include. When using this notation for numeric parameters,
there are a number of extra options

Px Use the default formatting. For integer numbers, output the ASCII

text of the number in decimal; for numbers with decimal points,
output the ASCII text of the number and all the digits after the
decimal point; for text inputs, output the text itself
Examples:
The integer 12 outputs the characters ‘1’, ‘2’
The floating point number 3.141 outputs the characters ‘3’, ‘.’, ‘1’,
‘4’, ‘1’
The text “hi!” outputs the characters ‘h’, ‘i', ‘!’.

Px:n.m Output the number, with a maximum of n digits to the left of the
decimal point and m digits to the right. If the input parameter is
text, ignore n.m and just output the text.

Px:Zn.m Same as above, but add leading zeros to ensure a total of n digits
appear to the left of the decimal point.

Px:nX Output the ASCII representation of the number as n hexadecimal
digits. If the input parameter is a floating point number, the digits
after the decimal are ignored. If the input parameter is text, ignore
the nX and just output the text.
Example: Px:2X applied to the decimal value 254 outputs ‘F’, E’

Px:ZnX Same as above, but add leading zeros to ensure a total of n digits.
Px:C Output the character as a single byte of data.

Isadora Manual 262

Examples:
The number 65 gives ‘A’
The number 13 gives a carriage return character

To send ASCII text, you must enclose the text in double-quotes, i.e. to send the
word hello you would enter “hello”. When specifying ASCII text, you can send
various control characters by using one of the special “escape” sequences shown
below.

\a 0x07 (Bell)
\b 0x08 (Backspace)
\f 0x0C (Form Feed)
\n 0x0A (New Line)
\r 0x0D (Carriage Return)
\t 0x09 (Tab)
\\ Backslash
\” Double-quote
\0 0x00 (Null)

Note that to include a double-quote or a backslash inside of ASCII text, you must
precede it with a backslash as well.
Some further examples:

0E 11 C0 – sends the three hexadecimal bytes, 0E 11 C0, which are decimal 14, 17
and 192 respectively.

“pl\r” – sends the characters ‘p’ and ‘l’ followed by a carriage return (hex 0D,
decimal 13)

05 “hello” 0A 0D – sends eight bytes, starting with 5, then the characters ‘h’, ‘e’,
‘l’, ‘l’, ‘o’, followed by hex 0A and 0D (which are 10 and 13 in decimal.)

FF “?” P1:C P2:C – sends four bytes, starting with hexadecimal FF (255 decimal)
followed by the character “?”, and ending with two bytes that give the value input
parameters 1 and 2 (Param 1, Param 2) respectively.

Isadora Manual 453

• param 1, param 2, etc: variable value parameters that will be inserted into the
message. See description above for more about using variable parameters.

Send Raw Serial Data (v1.3)

Sends raw data to the specified serial port. This actor has two modes: ‘text’
and ‘hex’.

Input Properties
• port: Specifies the serial port to which the data will be sent when triggered, from

1 to 8. This port is configured using the Serial Port Setup dialog found in the
Communications menu.

• mode: When set to ‘text’, the text received at the text input is sent directly to the
serial port. When set to ‘hex’, the text must consist of hexidecimal characters (0-
9, A-F). Each pair of characters is converted to its single byte equivalent and the
result sent to the serial port. The latter option is essential if you need to send data
that includes the value 0 within the block of data, as this is the marker for the end
of a text string.

• text: The text to send to the serial port, interpreted according to the ‘mode’
setting.

Send Serial Data (v1.1)

Formats and sends data to the specified serial port.

To specify the precise format of the data sent to the serial port, you must double-
click this actor and change its formatting specifier. To learn more about how to
control formatting, see “Data Output Formatting” on page 249.

Isadora Manual 454

Input Properties
• port: Specifies the serial port to which the data will be sent. This port is

configured using the Serial Port Setup dialog found in the Communications menu.
• trigger: When a trigger is received on this port, the data is sent to the specified

port.
• params: The number of variable parameter inputs. Increasing this number adds

parameter inputs, decreasing it removes them.
• param 1, param 2, etc: variable value parameters that will be inserted into the

output data. See “Data Output Formatting” on page 260 for more information on
how to format the data from these inputs.

The param inputs of this actor are mutable. Each input will change its data
type to match that of the first link made to it. The inputs will become mutable
again if all of its links are disconnected. (To learn more about mutable inputs
and outputs, please “Mutable Inputs and Outputs” on page 107.)

Send Sys Ex

Sends a MIDI System Exclusive message, which may contain variable
values, each time a trigger is received.

To specify the contents of the System Exclusive message, double-click this actor's
icon. A dialog allowing you to edit the System Exclusive message will appear:

Messages must be entered in hexadecimal, starting with a hex F0 (start of
exclusive) and ending with hex F7 (end of exclusive).

You can insert up to nine variable values in the message by using the codes P1 – P9
instead of a valid hexadecimal number. After you do this, you should then set the

Isadora Manual 455

params input to the desired number of variable parameters, and the specified
number of parameter value inputs will appear (e.g, param 1, param 2, etc.) When a
message is sent, the codes P1 – P9 specified in the editor will be replaced with the
current value of the matching parameter inputs (i.e. “P2” in the message above is
replaced by the value of the param 2 input).

Input Properties
• port: The MIDI port on which the message will be sent. These port numbers

correspond to the Destinations shown in the MIDI Setup dialog.
• trigger: Sends a MIDI System Exclusive message each time a trigger is received

on this input.
• params: The number of variable parameter inputs. Increasing this number adds

parameter inputs, decreasing it removes them.
• param 1, param 2, etc: variable value parameters that will be inserted into the

System Exclusive message. See description above for more about using variable
parameters.

Serial In Watcher Binary

Reads a fixed length binary data block from the specified serial port using a
user-specified pattern matching specification.

(Note: To read data consisting of variable length messages marked by a delimiter,
use the Serial In Watcher - Text actor.)

Values within the data are parsed and output from this actor according to a user-
specified pattern-matching specifier. To edit this specifier, double-click this actor’s
icon, and the editor will open. For documentation on parsing input streams, see
“Data Input Parsing” on page 251

Input Properties
• port: Specifies the serial port from which to receive data.
• enable: When turned on, reads all data from the serial port and attempts to match

the specified pattern. When turned off, ignores data from the serial port. This
should be used with caution as enabling this input in the middle of a message may
result in the data being read erroneously.

Isadora Manual 456

• msg len: The length of the data blocks to be received by this watcher. Each time
the specified number of bytes arrives on the specified serial port, an attempt will
be made to use the pattern matching specifier to decode the incoming data.

• timeout: Specifies a timeout for the input buffer. If more than this amount of time
passes between receiving any two bytes, the input buffer will be cleared and the
incoming message length count reset to zero.. This is to help avoid erroneous
messages should the serial input cable be accidentally disconnected, etc.

• reset: Clears the input buffer when triggered and resets incoming message length
count is reset to 0.

Output Properties
• trigger.: Sends a trigger when a valid message has been parsed and it matches the

pattern specified by the pattern-matching specifier.
• value outputs.: The output for one of the parsed values. (The names and number

of these outputs are based on the pattern-matching specifier.)

Serial In Watcher Text

Reads a variable length data block from the specified serial port using a
user-specified pattern matching specification.

(Note: To read data consisting of fixed length messages with no delimiter, use the
Serial In Watcher - Binary actor.)

Values within the data are parsed and output from this actor according to a user-
specified pattern-matching specifier. To edit this specifier, double-click this actor’s
icon, and the editor will open. For documentation on parsing input streams, see
“Data Input Parsing” on page 251

Input Properties
• port: Specifies the serial port from which to receive data.
• enable: When turned on, reads all data from the serial port and attempts to match

the specified pattern. When turned off, ignores data from the serial port. This
should be used with caution as enabling this input in the middle of a message may
result in the data being read erroneously.

• eom char: The character that signifies the end of a message (i.e. eom = end of
message.) Whenever this character is received, the data accumulated in the buffer

Isadora Manual 457

is parsed using the pattern-matching specifier, and values are sent to the outputs if
a match is successfully made.

Output Properties
• trigger.: Sends a trigger when a valid message has been parsed and it matches the

pattern specified by the pattern-matching specifier.
• value outputs.: The output for one of the parsed values. (The names and number

of these outputs are based on the pattern-matching specifier.)

Sequential Trigger

Sends triggers out of multiple outputs sequentially.

Input Properties
• trig in: Sends a trigger to the next trigger output. The first trigger that is received

after the actor is activated will be sent to the trig 1 output. Each subsequent input
trigger will send a trigger out of the next available output. When the last output
has been triggered, the sequence starts over at the beginning.

• reset: Resets the sequence over so that the next trigger received at the trig in input
will send a trigger to the trig 1 output.

• outputs: determines the number of trigger outputs. Setting this value to a higher
number will add more trigger outputs to the actor, setting it lower will remove
trigger outputs.

Output Properties
• trig 1, trig 2, etc.: The output triggers.
•

